
KAIKEN SHIBA SMART
CONTRACT, CODE REVIEW
AND SECURITY ANALYSIS

REPORT

Customer​: Kaiken Shiba
Prepared on​: 20 July 2021
Platform: Binance Smart Chain
Language: Solidity

1



TABLE OF CONTENTS

Document 4

Introduction 4

Project Scope 5

Executive Summary 6

Code Quality 7

Documentation 8

Use of Dependencies 8

AS-IS Overview 9

Severity Definitions 11

Audit Findings 12

Conclusion 13

Our Methodology 14

Disclaimers 16

info@rdauditors.com Page 2



THIS DOCUMENT MAY CONTAIN CONFIDENTIAL INFORMATION

ABOUT ITS SYSTEMS AND INTELLECTUAL PROPERTY OF THE

CUSTOMER AS WELL AS INFORMATION ABOUT POTENTIAL

VULNERABILITIES AND METHODS OF THEIR EXPLOITATION.

THE REPORT CONTAINING CONFIDENTIAL INFORMATION CAN

BE USED INTERNALLY BY THE CUSTOMER OR IT CAN BE

DISCLOSED PUBLICLY AFTER ALL VULNERABILITIES ARE

FIXED - UPON DECISION OF CUSTOMER.

info@rdauditors.com Page 3



Document

Name Smart Contract Code
Review and Security
Analysis Report of Kaiken
Shiba

Platform BSC / Solidity

File 1 KaikenShiba.sol

MD5 hash A7614EFEAC7CAFD4E64CB1A7C
7D1DC6A

SHA256 hash
F7081039043FD0FDDEB5543033
ED61ED1FE7A3EA23775E937710
4AAF1159FBDE

Date 20/07/2021

Introduction

RD Auditors (Consultant) were contracted by Kaiken Shiba (Customer) to
conduct a Smart Contracts Code Review and Security Analysis. This
report represents the findings of the security assessment of the
customer`s smart contracts and its code review conducted between
15 - 20 July 2021.

This contract consists of one file.

info@rdauditors.com Page 4



Project Scope

The scope of the project is a smart contract.

We have scanned this smart contract for commonly known and more
specific vulnerabilities, below are those considered (the full list includes
but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page 5



Executive Summary

According to the assessment, the customer’s solidity smart contract is
well-secured.

You are here

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, manual audit found during automated analysis were manually

reviewed and applicable vulnerabilities are presented in the audit overview

section. The general overview is presented in the AS-IS section and all

issues found are located in the audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and 0 very low level issues.

info@rdauditors.com Page 6



Code Quality

Please find a link that, within this report safeMath,IERC20, ownable taken

from the popular open source.

The libraries within this smart contract are part of a logical algorithm. A

library is a different type of smart contract that contains reusable code.

Once deployed on the blockchain (only once), it is assigned to a specific

address and its properties/methods can be reused many times by other

contracts.

The Kaiken Shiba team has not provided scenario and unit test scripts,

which would help to determine the integrity of the code in an automated

way.

Overall, the code is almost not commented. Commenting can provide rich

documentation for functions, return variables and more. Use of Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page 7



Documentation

The hash of that file is mentioned in the table. As mentioned above, It's

recommended to write comments in the smart contract code, so anyone

can quickly understand the programming flow as well as complex code

logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page 8



AS-IS Overview
KaikenShiba

File And Function Level Report

File: KaikenShiba.sol

Contract: KaikenShiba
Import: IERC20, Ownable
Inherit: Ownable
Observation: Passed
Test Report: Passed
Score: Passed
Conclusion: Passed

Sl. Function Type Observation Test Report Conclusion Score
1 transfer write Passed All Passed No Issue Passed
2 allowance write Passed All Passed No Issue Passed
3 approve write Passed All Passed No Issue Passed
4 transferFrom write Passed All Passed No Issue Passed
5 increaseAllowance write Passed All Passed No Issue Passed
6 decreaseAllowance write Passed All Passed No Issue Passed
7 deliver write Passed All Passed No Issue Passed
8 reflectionFromToken read Passed All Passed No Issue Passed
9 tokenFromReflection read Passed All Passed No Issue Passed

10 excludeFromReward write Passed All Passed No Issue Passed
11 includeInReward write Passed All Passed No Issue Passed
12 _transferBothExcluded write Passed All Passed No Issue Passed
13 excludeFromFee write Passed All Passed No Issue Passed
14 includeInFee write Passed All Passed No Issue Passed
15 setTaxFeePercent write Passed All Passed No Issue Passed
16 setLiquidityFeePercent write Passed All Passed No Issue Passed

info@rdauditors.com Page 9



17 setMaxTxPercent write Passed All Passed No Issue Passed
18 setSwapAndLiquifyEnabled write Passed All Passed No Issue Passed
19 _reflectFee write Passed All Passed No Issue Passed
20 _getValues read Passed All Passed No Issue Passed
21 _getTValues read Passed All Passed No Issue Passed
22 _getRValues read Passed All Passed No Issue Passed
23 _getRate read Passed All Passed No Issue Passed
24 _getCurrentSupply read Passed All Passed No Issue Passed
25 _takeLiquidity write Passed All Passed No Issue Passed
26 calculateTaxFee read Passed All Passed No Issue Passed
27 calculateLiquidityFee read Passed All Passed No Issue Passed
28 removeAllFee write Passed All Passed No Issue Passed
29 restoreAllFee write Passed All Passed No Issue Passed
30 isExcludedFromFee read Passed All Passed No Issue Passed
31 _transfer write Passed All Passed No Issue Passed
32 swapAndLiquify write Passed All Passed No Issue Passed
33 swapTokensForEth write Passed All Passed No Issue Passed
34 addLiquidity write Passed All Passed No Issue Passed
35 _tokenTransfer write Passed All Passed No Issue Passed
36 _transferStandard write Passed All Passed No Issue Passed
37 _transferToExcluded write Passed All Passed No Issue Passed
38 _transferFromExcluded write Passed All Passed No Issue Passed

info@rdauditors.com Page 10



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they
also have a significant impact on smart contract execution,
e.g. public access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however,
they cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated,
unused etc. These code snippets cannot have a significant
impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and
information statements cannot affect smart contract
execution and can be ignored.

info@rdauditors.com Page 11



Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

No low severity vulnerabilities were found.

Very Low

No very low severity vulnerabilities were found.

info@rdauditors.com Page 12



Conclusion

We were given a contract file and have used all possible tests based on

the given object. The contract is written systematically, so it is ready to go

for production.

Since possible test cases can be unlimited and developer level

documentation (code flow diagram with function level description) not

provided, for such an extensive smart contract protocol, we provide no

such guarantee of future outcomes. We have used all the latest static tools

and manual observations to cover maximum possible test cases to scan

everything.

The security state of the reviewed contract is now “well secured”

info@rdauditors.com Page 13



Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the

quality of systems we review and aim for sufficient remediation to help

protect users. The following is the methodology we use in our security

audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues

with code logic, error handling, protocol and header parsing,

cryptographic errors, and random number generators. We also watch for

areas where more defensive programming could reduce the risk of future

mistakes and speed up future audits. Although our primary focus is on

the in-scope code, we examine dependency code and behavior when it

is relevant to a particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's

web site to get a high level understanding of what functionality the

software under review provides. We then meet with the developers to

gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we

do this, we brainstorm threat models and attack surfaces. We read

design documentation, review other audit results, search for similar

projects, examine source code dependencies, skim open issue tickets,

and generally investigate details other than the implementation.

info@rdauditors.com Page 14



Documenting Results:
We follow a conservative, transparent process for analyzing potential

security vulnerabilities and seeing them through successful remediation.

Whenever a potential issue is discovered, we immediately create an

Issue entry for it in this document, even though we have not yet verified

the feasibility and impact of the issue. This process is conservative

because we document our suspicions early even if they are later shown

to not represent exploitable vulnerabilities. We generally follow a process

of first documenting the suspicion with unresolved questions, then

confirming the issue through code analysis, live experimentation, or

automated tests. Code analysis is the most tentative, and we strive to

provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyse the feasibility of an attack in a live

system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for

future releases. The mitigation and remediation recommendations

should be scrutinised by the developers and deployment engineers, and

successful mitigation and remediation is an ongoing collaborative

process after we deliver our report, and before the details are made

public.

info@rdauditors.com Page 15



Disclaimers
RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance
with the best industry practices at the date of this report, in relation to:
cybersecurity vulnerabilities and issues in smart contract source code,
the details of which are disclosed in this report, (Source Code); the
Source Code compilation, deployment and functionality (performing the
intended functions).

Because the total number of test cases are unlimited, the audit makes
no statements or warranties on the security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of
the code, bugfree status or any other statements of the contract. While
we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a public
bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The
platform, its programming language, and other software related to the
smart contract can have their own vulnerabilities that can lead to hacks.
Thus, the audit can’t guarantee explicit security of the audited smart
contracts.

info@rdauditors.com Page 16



Email: info@rdauditors.com

Website: www.rdauditors.com


