Croof

q Bring trust into your projects

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY
v1.0: 13. January, 2022

Audit

Security Assessment
15. January, 2022

M

For

VERSALNFT

ay in eternity

Disclaimer
Description

Project Engagement
Logo

Contract Link
Methodology

Used Code from other Frameworks/Smart Contracts (direct imports)

Tested Contract Files
Source Lines

Risk Level
Capabilities

Scope of Work
Inheritance Graph
Verify Claims
Modifiers

CallGraph

Source Units in Scope
Critical issues

High issues

Medium issues

Low issues
Informational issues
Commented Code exist
Audit Comments
SWC Attacks

o O o1 v O W

11
11
12
14
14
15
21
23
24
25
25
25
25
25
26
26
27

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc'..)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Version Date Description
1.0 15. January 2022 + Layout project
+ Automated- /Manual-Security
Testing
« Summary
1.1 16. January 2022 * Reaudit

http://SolidProof.io

Network
Binance Smart Chain (BEP20)

Website
https://versalnft.com/

Telegram
https://t.me/versalnft
https://t.me/versalnft_chat

Twitter
https://twitter.com/VersalNFT

Github

https:/aithub.com/versalnft/smart-contracts

Reddit
https:/www.reddit.com/user/VersalNFT

Medium
https:/medium.com/@versalnft

https://versalnft.com/
https://t.me/versalnft
https://t.me/versalnft_chat
https://twitter.com/VersalNFT
https://github.com/versalnft/smart-contracts
https://www.reddit.com/user/VersalNFT
https://medium.com/@versalnft

Description

VersalNFT is a blockchain-based virtual legal space that contains a multi-
user interface for creating, storing, and managing data. The basic function
of the project is the ability to create a personal digital signature in NFT,
containing information about the owner.

Versals (signature creators) will be able to sign documents for business or
personal with its help. These documents, in turn, are minted into tokens
and immortalized in the blockchain, and stored in crypto wallets.
Information about the creator, signers, time, content is recorded in the
token and protected from various kinds of manipulation. Using the
Unlock protocol, access to content is provided only to signers or a limited
number of persons.

The project has a set of rules that are consistent with English legal law.
Thus, VersalNFT, using blockchain technology, provides the community
with a connection between the crypto space and legal standards in the
real world.

Project Engagement

During the 13th of January 2022, VersalNFT Team engaged Solidproof.io
to audit smart contracts that they created. The engagement was
technical in nature and focused on identifying security flaws in the design
and implementation of the contracts. They provided Solidproof.io with
access to their code repository and whitepaper.

Logo

I11
).)
(\/1

Contract Link
v1.0

Testnet
VersalToken
https://testnet.bscscan.com/address/
OxOcbF2c0554fcBB527c27B19353f49A562dCAbcbEHcode
Vest
https://testnet.bscscan.com/address/
0x89f4d53f0486401bc8c97EE9F9aaFdb5F16bfeB9#code

https://testnet.bscscan.com/address/0x0cbF2c0554fcBB527c27B19353f49A562dCAbcbE#code
https://testnet.bscscan.com/address/0x0cbF2c0554fcBB527c27B19353f49A562dCAbcbE#code
https://testnet.bscscan.com/address/0x89f4d53f0486401bc8c97EE9F9aaFdb5F16bf6B9#code
https://testnet.bscscan.com/address/0x89f4d53f0486401bc8c97EE9F9aaFdb5F16bf6B9#code

\VAR

Testnet
VersalToken
https://testnet.bscscan.com/address/
Ox726A0e3293871a6571A30311B06edBO103cIA4A2#code

Vest
https://testnet.bscscan.com/address/
0Ox20818728cA827C7d910b2a270c58F2C913235798#code

Mainnet
VersalToken
https://bscscan.com/address/
OxEBD4F823B4B22c631b1EL894f46e772B0385c948#code

Vest

https://bscscan.com/address/
Ox96F7Bc6f91D5229575E1286c1C589B56Cfe86de8#code

https://testnet.bscscan.com/address/0x726A0e3293871a6571A30311B06edB0103c1A4A2#code
https://testnet.bscscan.com/address/0x726A0e3293871a6571A30311B06edB0103c1A4A2#code
https://testnet.bscscan.com/address/0x20818728cA827C7d910b2a270c58F2C913235798#code
https://testnet.bscscan.com/address/0x20818728cA827C7d910b2a270c58F2C913235798#code
https://bscscan.com/address/0xEBD4F823B4B22c631b1Eb894f46e772B0385c948#code
https://bscscan.com/address/0xEBD4F823B4B22c631b1Eb894f46e772B0385c948#code
https://bscscan.com/address/0x96F7Bc6f91D5229575E1286c1C589B56Cfe86de8#code
https://bscscan.com/address/0x96F7Bc6f91D5229575E1286c1C589B56Cfe86de8#code

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Medium

4-69

A vulnerability that
can disrupt the
contract functioning
in @ number of
scenarios, or creates a
risk that the contract
may be broken.

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

A vulnerability that
have informational
character but is not
effecting any of the
code.

Immediate action to
reduce risk level.

Implementation of
corrective actions as
soon aspossible.

Implementation of
corrective actionsin a
certain period.

Implementation of
certain corrective
actions or accepting
the risk.

An observation that
does not determine a
level of risk

Auditing Strategy and Techniques
Applied

Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:
1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test
cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

v1.0

VersalToken Vest
Context Context

Ownable Ownable

IBEP20 IBEP20
= SafeMath

= Address
BEP20

Initializable

vi.l
Vest

Context
Ownable
IBEP20

= Address

= SafeBEP20

Tested Contract Files
This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0
File Name SHA-1 Hash
contracts/Vest.sol c72ccc95cdb336ef77c4f9cdf5dd117ef4b566d8

contracts/VersalToken.sol 69ace2432933880913a1652cc35f01affb2f88db

\VAR
File Name SHA-1 Hash
contracts/Vest.sol 3090b32bcc7fee60e7ebb22811ca4991b18db0d7

contracts/VersalToken.sol b7392404e5708427db4a13479c2ad746eb0b9eae

10

Metrics

Source Lines
v1.0

I source comment [single block I mixed
N empty I todo blockEmpty

\
N
7/

Risk Level
v1.0

=1 overall average

perceivedComplexity
7.
compilerVersion 6 size
compilerFeatures numLogicContracts
inlineDocumentation numFiles
interfaceRisk

11

Capabilities

Components
Version Contracts Libraries Interfaces Abstract
1.0 7 > > :
11 7 4 2 1

Exposed Functions
This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

Version Public Payable
1.0 48 0
Version External Internal Private Pure View
1.0 21 70 2 10 29
1.1 21 97 3 11 32
State Variables
Version Total Public
1.0 38 28
Capabilities
Has
Solidity Experim Can Uses Destroya
Version Versions ental Receive Assembl ble
observed Features Funds y Contract
s
10 0.8.4 yes
(Basm
Lobo 2 blocks)

12

Transfer
s ETH

yes

Low-
Level
Calls

Delega
teCall

yes

Uses Hash
Functions

ECRe
cover

New/
Create/
Create2

13

Scope of Work

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:

Correct implementation of Token standard
Deployer cannot mint any new tokens
Deployer cannot burn or lock user funds
Deployer cannot pause the contract
Overall checkup (Smart Contract Security)

1.

2.
3.
4.
5.

Inheritance Graph

VersalToken

v1.0

14

Verify Claims

Correct implementation of Token standard

Tested Verified

Function

Description

TotalSupply

provides information about the total
token supply

BalanceOf

provides account balance of the
owner's account

Transfer

executes transfers of a specified
number of tokens to a specified
address

TransferFrom

executes transfers of a specified
number of tokens from a specified
address

Approve

allow a spender to withdraw a set
number of tokens from a specified
account

Allowance

returns a set number of tokens from
a spender to the owner

Exist | Tested Verified

15

Write functions of contract

v1.0

VersalToken

1. approve

2. decreaseAllowance

3. increaseAllowance

4. renounceOwnership

5. setVest

6. transact

7. transfer

8. transferFrom

9. transferOwnership

10. updateWallet

Vest

1. addPrivateWallet

2. claimPrivate

3. claimSeed

4. claimTeam

5. contractLock

6. initialize

7. renounceOwnership

8. transferOwnership

16

Deployer cannot mint any new tokens

Name Exist Tested Verified

Deployer cannot mint

Max / Total Supply: -

Comments:

v1.0

Deployer can mint with transact function

If function called a percentage of the amount is sent out to

addresses
Amount * develpPercent goes to development
Amount * airDropPercent goes to airDrop
Amount * presalePercent goes to presaleWallet
Amount * idoPercent goes to idoWallet
Amount * partnerPercent goes to partnersWallet
Amount * 39.5e18 goes to vest
Amount * marketingPercent goes to marketingWallet

17

Deployer cannot burn or lock user funds

Name Exist Tested Verified

Deployer cannot
lock

Deployer cannot

burn
Comments:
v1.0
Deployer can lock claims in Vest for
Team
Seed
Private

Deployer cannot lock user funds the VersalToken

18

Deployer cannot pause the contract

Name Exist Tested Verified

Deployer cannot
pause

19

Overall checkup (Smart Contract Security)

Tested Verified

Legend

Attribute Symbol

Verfified / Checked

Partly Verified

Unverified / Not checked

Not available

20

Modifiers

VersalToken
onlyOwner
setVest
updateWallet
transact
Vest
onlyOwner
initialize
contractlLock
isLock
claimSeed
claimTeam
claimPrivate
addPrivateWallet

Comments
While initializing the totalSupply amount of current address is

multiplied by privatePercent (17e18) divided by 100e18. The result of this

calculation is multiplied by 10/100 and will be send to privateWallet

address.
Initialize function can be called without any limitations

ClaimSeed, claimTeam, claimPrivate and addPrivateWallet can be

called without any limitations also if there is a isLock modifier because
there is a function which can set lockStatus without any limitations by

the owner
claimTeam
Can only called if
msg.sender is teamWallet
teamTime[msg.sender] == O or block.timestamp >=
teamTime[msg.sender] + 30 days
claimCount[msg.sender] <10
Team can only claim 10 times

Following amount will send to team address
uint amount = totalSupply * teamPercent /100e18;
token.transfer(msg.sender,amount*10/100);

claimSeed

Can only called if
msg.sender is seedWallet
seedTime[msg.sender] == 0 or block.timestamp >=
seedTime[msg.sender] + 30 days
claimCount[msg.sender] <10

Seed address can only claim 10 times

21

Following amount will send to seed address
uint amount = totalSupply * seedPercent /100€18;
token.transfer(msg.sender,amount*10/100);

Keep it in mind, if deployer initialize new seed or team address it is
possible to claim again 10 times each address

PrivateWallet can add new private details, but cannot be reverted

22

CallGraph

23

Source Units in Scope

v1.0
. Logic
Type File Contracts
7% contracts/Vest.sol 3
: &1 contracts/VersalToken.sol 7
-
28X rotals 10
«®
\"AR
. Logic
Type Flle Contracts
280, contracts/Vest.sol 5
: & contracts/VersalToken.sol 7
-
782 Totals 12
®
Legend
Attribute Description
Lines
NnLines
NSLOC

Comment Lines

Complexity Score

Interfaces

1

Interfaces

1

Lines

298

928

1226

Lines

608

935

1543

nLines

219

787

1006

nLines

462

794

1256

total lines of the source unit

nSLOC

144

315

459

nSLOC

260

323

583

Comment
Lines
111

484

595

Comment
Lines
252

484

736

Complex.

Score

113

242

355

Complex.

Score

190

257

447

Capabilities

‘o

Capabilities

15

normalized lines of the source unit (e.g. normalizes functions

spanning multiple lines)

normalized source lines of code (only source-code lines; no
comments, no blank lines)

lines containing single or block comments

a custom complexity score derived from code statements that

external interfaces, ...)

are known to introduce code complexity (branches, loops, calls,

24

Audit Results

AUDIT PASSED

Critical issues

No critical issues

High issues

No high issues

Medium issues

No medium issues

Low issues

Issue

#1

File Type

All Contract doesn't

import npm packages

from source (like
OpenZeppelin etc))

Informational issues

Issue

#1

#2

File Type

VersalTo | State variables that

ken could be declared
constant (constable-
states)

Vest State variables that

could be declared
constant (constable-
states)

Line

Line

890, 888,
892, 889,
893, 891,

515, 516 514

Description

We recommend to import all
packages from npm directly
without flatten the contract.
Functions could be modified
or can be susceptible to
vulnerabilities

Description

Add the “constant”
attributes to state variables
that never change

Add the ~constant’
attributes to state variables
that never change

25

Commented Code exist
There are some instances of code being commented out in the following

files that should be removed:

File Line Comment

VersalTok 329 //assert(a==b*c+a % b);// There is no case in which this
en doesn't hold

Recommendation
Remove the commented code, or address them properly.

Audit Comments
15. January 2022:

Deployer can lock claims in Vest
Read whole report for more information

16. January 2022:
Reaudited contracts
Issues fixed

SWC Attacks

ID

0
=

3

B &

‘m
=

I

‘m
=

s

n
=

O

HRE K]

‘m
=

6L

n
=

3

BRE R

Title

Unencrypted
Private Data
On-Chain

Code With No
Effects

Message call
with
hardcoded
gas amount

Hash
Collisions With
Multiple
Variable
Length
Arguments

Unexpected
Ether balance

Presence of
unused
variables

Right-To-Left-
Override
control
character
(U+202E)

Typographical
Error

DoS With
Block Gas
Limit

Relationships

CWE-767: Access to Critical
Private Variable via Public
Method

CWE-1164: Irrelevant Code

CWE-655: Improper
Initialization

CWE-294: Authentication
Bypass by Capture-replay

CWE-667: Improper Locking

CWE-1164: Irrelevant Code

CWE-451: User Interface (Ul)
Misrepresentation of Critical

Information

CWE-480: Use of Incorrect
Operator

CWE-400: Uncontrolled
Resource Consumption

Status

27

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

‘m
=

N

=

s

‘m
=

R [2

0
=

O

RRE R

‘m
=

STe

‘m
=

oL

0 |ooQ‘m m‘(p‘m
‘E ‘:5 LS

N ‘(‘)
1

Arbitrary
Jump with
Function Type
Variable

Incorrect
Inheritance
Order

Write to
Arbitrary
Storage
Location

Requirement
Violation

Lack of Proper
Signature
Verification

Missing
Protection
against
Signature
Replay Attacks

Weak Sources
of
Randomness
from Chain
Attributes

Shadowing
State Variables

Incorrect
Constructor
Name

Signature
Malleability

CWE-695: Use of Low-Level
Functionality

CWE-696: Incorrect Behavior
Order

CWE-123: Write-what-where
Condition

CWE-573: Improper Following
of Specification by Caller

CWE-345: Insufficient
Verification of Data
Authenticity

CWE-347: Improper
Verification of Cryptographic

Signature

CWE-330: Use of Insufficiently
Random Values

CWE-710: Improper Adherence

to Coding Standards

CWE-665: Improper
Initialization

CWE-347: Improper
Verification of Cryptographic

Signature

28

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

[¥a] [ON'e) ‘U)
‘5 ‘: s

[€p ‘O
1

‘m
=

IS ‘Q

[¥a] N O ‘U)
‘5 ‘: s

N ‘O
1

=

I—‘O
a
—

wn o 10 |\
2 PLE

8 [2

=

& 2

‘m
=

RE

‘m
=

82

Timestamp
Dependence

Authorization
through
tx.origin

Transaction
Order
Dependence

DoS with
Failed Call

Delegatecall
to Untrusted
Callee

Use of
Deprecated
Solidity
Functions

Assert
Violation

Uninitialized
Storage
Pointer

State Variable
Default
Visibility

Reentrancy

Unprotected
SELFDESTRUC
T Instruction

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race

Condition')

CWE-703: Improper Check or
Handling of Exceptional
Conditions

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-670: Always-Incorrect
Control Flow Implementation

CWE-824: Access of
Uninitialized Pointer

CWE-710: Improper Adherence
to Coding Standards

CWE-841: Improper
Enforcement of Behavioral
Workflow

CWE-284. Improper Access
Control

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

=

3

n
=

O

geE K|

‘m
=

B

=

El

‘m
=

|O |(')
O |4

Unprotected
Ether
Withdrawal

Unchecked
Call Return
Value

Floating
Pragma

Outdated
Compiler
Version

Integer
Overflow and
Underflow

Function
Default
Visibility

CWE-284. Improper Access
Control

CWE-252: Unchecked Return
Value

CWE-664: Improper Control of
a Resource Through its
Lifetime

CWE-937: Using Components
with Known Vulnerabilities

CWE-682: Incorrect
Calculation

CWE-710: Improper Adherence

to Coding Standards

30

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Scope of Work
	Inheritance Graph
	Verify Claims
	Modifiers
	CallGraph
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Commented Code exist
	Audit Comments
	SWC Attacks

